Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization
نویسندگان
چکیده
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.
منابع مشابه
Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
متن کاملBioluminescent Diagnostic Imaging to Characterize Altered Respiratory Tract Colonization by the Burkholderia Pseudomallei Capsule Mutant
Pneumonia is a common manifestation of the potentially fatal disease melioidosis, caused by the select agent bacteria Burkholderia pseudomallei. In this study we describe a new model system to investigate pulmonary melioidosis in vivo using bioluminescent-engineered bacteria in a murine respiratory disease model. Studies were performed to validate that the stable, light producing B. pseudomalle...
متن کاملThe bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice
BACKGROUND In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis. FINDINGS To analyse and image listerial dissemination after oral infection we ...
متن کاملCatheter Colonization and Abscess Formation Due to Staphylococcus epidermidis with Normal and Small-Colony-Variant Phenotype Is Mouse Strain Dependent
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated...
متن کاملThe Inhibitory Effect of Lactobacillus rhamnosus GG on Vancomycin Resistant Enterococcus faecalis Colonization in Mouse
Background&Aims: Vancomycin Resistant Enterococci (VRE) are among the most common nosocomial pathogens worldwide. The intestinal tract provides a major source for transmission of these bacteria. Probiotics are living microorganisms that moderate use of them has inhibitory effect on intestinal colonization by enteric pathogens. We examined the effect of Lactobacillus rhamnosus GG (LGG) on inhibi...
متن کامل